

Efficient Photochemical Dihydrogen Generation Initiated by a Bimetallic Self-Quenching Mechanism

Matthew B. Chambers, Daniel A. Kurtz, Catherine L. Pitman, M. Kyle Brennaman, and Alexander J. M. Miller*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States

Supporting Information

ABSTRACT: Artificial photosynthesis relies on coupling light absorption with chemical fuel generation. A mechanistic study of visible light-driven H₂ production from $[Cp*Ir(bpy)H]^+$ (1) has revealed a new, highly efficient pathway for integrating light absorption with bond formation. The net reaction of 1 with a proton source produces H₂, but the rate of excited state quenching is surprisingly acid-independent and displays no observable deuterium kinetic isotopic effect. Time-resolved photoluminescence and labeling studies are consistent with diffusion-limited bimetallic self-quenching by electron transfer. Accordingly, the quantum yield of H₂ release nearly reaches unity as the concentration of 1 increases. This unique pathway for photochemical H₂ generation provides insight into transformations catalyzed by 1.

Light-driven production of dihydrogen (H₂) from low energy proton sources is a central transformation in the continued development of solar energy storage technologies.¹⁻⁴ The most advanced solar fuels devices are semiconductor photoelectrodes comprised of separate light absorption, charge separation and catalyst components.³ These multicomponent systems can be difficult to prepare, inefficient in mediating interfacial charge transfer, and operationally unstable.^{2,4} Molecular approaches to photochemical H₂ generation also typically involve multicomponent mixtures that feature photosensitizers, redox mediators, and catalysts.⁵⁻⁷

A simpler approach would utilize a single molecular photocatalyst that absorbs light and mediates H₂ formation. One class of single-component photocatalyst is Nocera's dirhodium platform, in which photochemical X₂ elimination followed by reaction with hydrohalic acids generates metal hydrides that can photochemically produce H₂.^{7–9} We have pursued a strategy in which a metal hydride is generated electrochemically at mild potentials and then absorbs visible light to release H₂. This molecular photoelectrocatalyst strategy remains relatively unexplored, however, and development is limited by the lack of molecular complexes that photochemically generate H₂ with high efficiency.⁹ Tightly integrating electrochemical and photochemical steps into a single tunable molecular photocatalyst could improve efficiency relative to current multicomponent systems.

We recently reported the first example of H_2 evolution by molecular photoelectrocatalysis.¹⁰ The catalyst $[Cp*Ir(bpy)Cl]^+$ (2-Cl) produces H_2 from neutral water near the H^+/H_2 thermodynamic potential with high Faradaic efficiency and

Scheme 1. Molecular Photoelectrochemical H₂ Evolution

external quantum efficiency (~10%).¹⁰ The light-absorbing intermediate is the metal hydride $[Cp*Ir(bpy)H]^+(1)$, synthetically accessible in high yield and capable of quantitative production of H₂ upon illumination in water or acetonitrile (CH₃CN) in the presence of acids (Scheme 1).^{10,11} Hydride 1 has a rich history in photochemical catalysis and is a key intermediate in light-driven water—gas shift, formic acid dehydrogenation, and proton transfer processes.^{12–15} Even in the dark, **1** is a thermal catalyst for a wide range of hydrogen transfer reactions.^{16,17,18}

Despite the prominent photocatalytic role of monohydride 1, little is known about the mechanism of photochemical H₂ release.^{10,11} In contrast to dihydride complexes that release H₂ through well-understood reductive elimination photoprocesses, light-driven H₂ release from monohydride complexes is rare and mechanistically ill-defined.^{9,19,20} Scheme 1 shows net hydride/ proton coupling to release H₂, which could occur via a concerted hydride ion transfer, stepwise electron/hydrogen atom transfer, or a three-step sequence of proton and electron transfers. More broadly, the nature of the H₂ release process remains an enduring mechanistic question for all monohydride photocatalysts and electrocatalysts: hydrides most commonly release H₂ by reaction with a proton source, but rare examples of bimetallic coupling have also been proposed. $^{21-24}$ We embarked on a mechanistic study of H₂ release from 1 to reveal the origins of its remarkable photoefficiency and provide guiding principles for the development of future photocatalysts.

Indications of an unexpected bimetallic mechanism were uncovered while studying photoelectrocatalytic H₂ evolution in aqueous media. The chloride complex **2-Cl** was prepared as previously described and the rate of H₂ evolution was analyzed by chronoamperometry (CA).¹⁰ As the catalyst concentration was varied from 0.25 mM to 1 mM, the observed rate constant for H₂ evolution catalysis exhibited an unexpected dependence on

Received: August 19, 2016 Published: September 27, 2016

Scheme 2. Possible Pathways of H₂ Generation from 1

catalyst concentration. If the reaction is first order in catalyst, rate constants determined using the electroanalytical equations of Nicholson and Shain should not vary as a function of catalyst concentration.²⁵ The observed linear dependence (Figure S2) instead suggests that the process is second order in catalyst.

To further probe the mechanism of photochemical H₂ release from 1, we isolated the hydride and examined its excited state reactivity in CH₃CN. In prior studies in CH₃CN, we established that 1 cleanly releases H₂ with organic acids and characterized some relevant thermochemical properties, without exploring the detailed mechanism and kinetics.¹¹ In this work, CH₃CN solvent supports the use of well-defined organic acids with tunable pK_a values and makes possible labeling experiments that would be hampered by H/D exchange in water.^{12,18d}

Visible light illumination of 1 in CH₃CN containing excess acetic acid (CH₃CO₂H) cleanly generates H₂ and [Cp*Ir(bpy)-(O₂CCH₃)]⁺ (**2-O₂CCH₃**). The reaction is easily monitored by ¹H NMR or UV–vis spectroscopy, and the yield of H₂ is quantitative by gas chromatography.¹¹ Scheme 2 outlines the two broad photochemical H₂ release pathways considered. In the monometallic pathway, the iridium hydride excited state reacts with a proton donor. In the bimetallic pathway, two iridium hydrides react to afford H₂ along with 2-L and Cp*Ir(bpy) (3),^{26,27} which are favored over unstable Ir(II) species.^{28,29} Protonation of 3 regenerates one equivalent of 1.

A labeling study was performed to differentiate between the monometallic and bimetallic pathways of Scheme 2. In the presence of a deuterated acid, photolysis of unlabeled 1 would produce HD via the monometallic pathway, whereas H_2 would be produced via the bimetallic pathway. Photolyses of 1 were performed in CD₃CN with a 10-fold excess of CD₃CO₂D and the isotopic distribution of dihydrogen was monitored periodically by ¹H NMR spectroscopy. Substantial quantities of both HD and H_2 were detected over the 30 min needed to reach completion (Figure 1). The inset of Figure 1 reveals an initial burst of H_2 in the first minute, followed by formation of HD (before both solvated gases are lost to the headspace). On the time scale of these experiments, H/D exchange in the dark is negligible (Figure S12). The observation of H_2 suggests that a bimetallic pathway is operative.

At the end of the reaction, the acetate complex $2-O_2CCH_3$ is the sole product. During the course of the reaction, however substantial amounts of $[Cp^*Ir(bpy)(NCCH_3)]^{2+}$ (2-NCCH₃) were also observed, in accord with the bimetallic pathway of Scheme 2. Although not observed, intermediate 3 could be protonated by CD_3CO_2D to afford an iridium deuteride.^{12,26} Continued irradiation would lead to coupling between Ir–H and Ir–D, accounting for the HD observed at later times. Consistent with this hypothesis, the hydride resonance of 1 diminishes twice as fast as the Cp* resonances (Figure S8) due to the generation of 1 equiv of $[Cp*Ir(bpy)D]^+$ (1-D) for each equiv of H₂. Further

Figure 1. Concentration of $H_2(\blacktriangle)$ and HD (\blacklozenge) detected by ¹H NMR spectroscopy during the photolysis of 11.5 mM of 1 and 100 mM of CD₃CO₂D in CD₃CN with 460 mn light. Inset shows the first 1 min. H₂ concentration corrected for thermal population of para-H₂.³¹

Figure 2. Quantum yield at various concentrations of 1 with excess CH₃CO₂H in CH₃CN solution (443 nm at a flux of 1.9×10^{-6} mol of photons min⁻¹ cm⁻²). Inset: log(Φ_{H2}) vs log([1]) up to 5 mM.

evidence against the monometallic pathway comes from reactions varying the acidity of the proton source. The initial rate of conversion of **1** in the presence of $[DNEt_3]^+$ ($pK_a = 18.8$ in CH₃CN)³⁰ was essentially the same as the initial rate of conversion in the presence of CD₃CO₂D ($pK_a = 23$ in CH₃CN).

If the bimetallic process is rate-determining, the quantum yield of H₂ formation (Φ_{H2}) should depend on the concentration of 1. Initial rates of H₂ formation from CH₃CN solutions of 1 and an organic acid illuminated with a 443 nm LED light source were obtained by monitoring the reaction progress by UV–vis spectroscopy. Quantum yields were calculated by dividing the initial rates of H₂ formation by the photon flux.³²

Figure 2 shows that Φ_{H2} increases dramatically with increasing concentrations of 1. Remarkably, illuminating solutions above 19 mM in 1 gives $\Phi_{H2} > 0.93$. Hydride 1 must be fulfilling a role beyond light absorption that facilitates efficient light-to-fuel energy conversion. Plotting $\log(\Phi_{H2}) vs \log([1])$ (Figure 2 inset) reveals a slope of 1. A photochemical reaction that is first order in the light absorber 1 should have a quantum yield that is independent of the concentration of 1. The observed concentration dependence suggests that the reaction is second order in 1.

To interrogate specifically the excited-state reactivity of 1, we turned to photoluminescence spectroscopy. Excitation of 1 at 443 nm at 298 K yields 1*, a triplet excited state that exhibits a broad, featureless emission peak with a maximum at 708 nm.^{11,33} Addition of acid led to no observable decrease in emission intensity. On the contrary, emission quenching was evident as the concentration of 1 increased, with a Stern–Volmer quenching constant (K_{SV}) of 230 M⁻¹ (Figure S28).

 Table 1. Excited-State Lifetimes and Self-Quenching

 Constants Determined by Stern–Volmer Analysis^a

sample ^a	$\tau_{\rm o}\left({\rm ns}\right)$	$K_{\rm SV} \left({ m M}^{-1} ight)$	$k_{\rm q} ({\rm M}^{-1} {\rm s}^{-1})$
$[Cp*Ir(bpy)H]^+ + acid^b$	103	360	3.5×10^{9}
[Cp*Ir(bpy)H] ⁺	98	370	3.8×10^{9}
$[Cp*Ir(bpy)D]^{+c}$	118 ^d	480	4.0×10^{9}
^a Ir concentrations between	0.1 and 1 r	nM ovaluatod i	n CH CN with

"Ir concentrations between 0.1 and 1 mM evaluated in CH₃CN with 100 mM $[Bu_4N][PF_6]$.³² ^bSamples run with 50 mM CH₃CO₂H. ^cSynthesis of isotopically labeled **1-D** (88% D by ¹H NMR). ^dLonger τ_o is in accord with excitation from *d*-orbital with Ir–D character.³⁵

Time-resolved photoluminescence spectroscopy can provide more detailed information on the nature of emission quenching. We set out to measure changes in luminescence lifetime (τ) of 1* under various reaction conditions. Consistent with the steadystate behavior, τ was invariant with respect to CH₃CO₂H concentration (Figure S37), suggesting that the acid does not react directly with the excited state 1*. The lifetime decreased significantly with increasing [1] in the presence of a constant concentration of CH₃CO₂H (Figure S34). The decrease in τ is indicative of dynamic self-quenching and indicates that the bimetallic process directly involves excited state 1*.

Self-quenching rate constants were determined via Stern– Volmer analysis, after estimating the intrinsic lifetime of 1* if it were in the absence of quencher (τ_o) by extrapolating the relationship between the lifetime and [1] to infinite dilution (Figures S34 and S35).³⁴ The results of Stern–Volmer analysis are presented in Table 1. In the presence of acid, 1 features a selfquenching rate constant ($k_q = 3.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$) nearing the diffusion limit. In the absence of acetic acid, the quenching behavior is essentially identical, $k_q = 3.8 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$.

Kinetic isotope effect (KIE) studies indicate that no Ir—H bond breaking occurs during self-quenching. Deuterium-labeled **1-D** has a self-quenching rate constant of $4.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, providing a KIE of 1.0(1) (Table 1). This experiment rules out photochemical Ir—H homolysis to produce free H·, which has been observed previously.⁹ The absence of free H· is further supported by the limiting value $\Phi_{H2} = 1$ and the lack of HD formation during photolysis of 1 and CD₃CO₂D in CD₃CN.

Self-quenching without bond-breaking can be observed in triplet—triplet annihilation.³⁶ To probe for a bimolecular reaction involving two equivalents of 1*, quantum yields were measured at constant concentrations of 1 and CH₃CO₂H with a variable photon flux. Only a slight decrease in Φ_{H2} with increasing photon flux is apparent, ruling out quenching through the interaction of two excited state species. Furthermore, the lifetime of 1* is invariant with respect to the intensity of the excitation pulse (1–6 mJ, Figure S43). The combined time-resolved luminescence data are fully consistent with bimetallic self-quenching by electron transfer between 1* and 1. Though self-quenching has been observed in other organometallic complexes, it has not been coupled with H₂ release or other chemical bond formation.^{34,37,38}

Scheme 3 depicts a mechanism for photochemical production of H₂ from 1 that is consistent with all of the experimental data. Photoexcitation of 1 affords metal-to-ligand-charge-transfer (MLCT) triplet excited-state 1*, which is quenched by another molecule of 1 via diffusion-controlled electron transfer. As the concentration of 1 increases, the rate of electron transfer increases, eventually outcompeting other decay pathways to enable quantitative photon-to-fuel efficiency. Electron transfer would produce highly reactive hydrides Cp*Ir(bpy)H (4) and [Cp*Ir-(bpy)H]²⁺ (5), which could rapidly couple by hydrogen atom Scheme 3. Proposed Mechanism of H₂ Formation from 1

transfer to generate H₂ along with 3 and 2-NCCH₃. Protonation of 3 regenerates 1, accounting for the overall 1:1 stoichiometry of 1:H⁺. In the absence of acid, the major product is a previously reported bridging iminoacyl derived from CH₃CN, which is formed with H₂ and other Ir-containing species (Figure S13).¹¹

The photochemical process is rate-determining for H₂ release due to the low concentrations of 1* maintained during steadystate photolysis. Consistent with protonation occurring after the rate-determining process, Φ_{H2} was independent of acid strength (CH₃CO₂H vs [HNEt₃]⁺) during steady-state photolyses. A KIE of 1.0(1) was obtained upon comparison of Φ_{H2} for 1 and 1-D in the presence of 50 mM CH₃CO₂H.

In an effort to facilitate electron transfer between two cationic species 1* and 1, the supporting electrolyte $[Bu_4N][PF_6]$ was added to the solvent. The lifetime of 1* decreases as the concentration of $[Bu_4N][PF_6]$ increases, indicating more efficient self-quenching and supporting the proposed mechanism. If electrolyte accelerates the rate-determining step, the overall quantum yield for H₂ release under steady-state photolysis should increase as well. Compared to the original conditions, $\Phi_{\rm H2}$ doubled when CH₃CN solutions of 0.1 M $[Bu_4N][PF_6]$, 0.55 mM 1, and excess CH₃CO₂H were photolyzed (Figure S22).

A self-quenching pathway for H₂ evolution is unprecedented, to our knowledge. To assess the plausibility of this new mechanism, self-quenching H₂ evolution was analyzed from a thermodynamic perspective. The driving force for electron transfer between 1* and 1 (eq 1) can be estimated based on the energy difference between the triplet excited state and the singlet ground state ($\Delta G_{\rm ST}$) and the redox properties of 1.³² A range of 47 < $\Delta G_{\rm ST}$ < 52 kcal/mol is estimated based on variable-temperature emission spectra.³² Cyclic voltammograms of 1 exhibit a quasi-reversible reduction ($E_{1/2} = -1.80$ V vs Fc^{+/0}) that becomes less reversible at slow scan rates.²⁹ An irreversible oxidation feature is also observed; some reversibility apparent at scan rates beyond 100 V/s provides an estimate of $E_{1/2} = 0.50$ V vs Fc^{+/0}.

The self-quenching reaction of eq 1 is nearly thermoneutral $(\Delta G^{\circ} = 3 \pm 2 \text{ kcal/mol})$, with oxidation and reduction potentials for 1* estimated as $\pm 1.6 \pm 0.1 \text{ V}$ and $-0.34 \pm 0.11 \text{ V}$, respectively. Endergonic excited-state electron transfers are not uncommon, and efficient rates have been observed in organometallic systems when unfavorable electron transfer ($\Delta G^{\circ} = \pm 7 \text{ kcal/mol}$) is followed by an irreversible chemical step.³⁹ Thus, self-quenching will be thermodynamically viable if the subsequent H₂ generation proceeds with significant driving force.

$$\mathbf{1}^* + \mathbf{1} \to \mathrm{Cp}^*\mathrm{Ir}(\mathrm{bpy})\mathrm{H} + [\mathrm{Cp}^*\mathrm{Ir}(\mathrm{bpy})\mathrm{H}]^{2+}$$
(1)

$$Cp*Ir(bpy)H + [Cp*Ir(bpy)H]^{2+} \rightarrow 3 + 2 - L + H_2$$
 (2)

The H–H coupling process (eq 2) was analyzed by a separate thermochemical cycle. Homocoupling of 4 and 5 would directly produce 3 and 2-L. Heterocoupling, with 4 delivering H⁻ and dicationic 5 delivering H⁺, would generate 2 equiv $[Cp*Ir^{II}(bpy)]^+$. The Ir(II) species would disproportionate to the same products 3 and 2-L,²⁸ so the thermochemistry of the two coupling routes is identical. The homocoupling pathway was used to assess eq 2 using the bond dissociation free energy (BDFE) values of 4 and 5.³² Based on the CV of 1 and the previously reported hydricity of 1 (62 kcal/mol),¹¹ very weak BDFEs are established for 4 (45 kcal/mol) and 5 (25 kcal/mol). Coupling to release H₂ is favorable by more than 33 kcal/mol.

The combined kinetic and thermodynamic analyses bring clarity to decades of photochemistry involving $[Cp*Ir(bpy)H]^+$ (1). Hydride 1 generates H₂ through an unprecedented, extremely efficient photochemical pathway initiated by self-quenching electron transfer. We hypothesize that the nearly perfect photon-to-fuel efficiency of 1 is a consequence of quenching the excited state via electron transfer, a process that is typically efficient. The second-order kinetics can be harnessed to produce H₂ in bulk with nearly perfect quantum efficiency. Surprisingly, the role of the acid source is simply to regenerate 1 equiv of 1 after H₂ release, which could lead to benefits such as pH-independent H₂ evolution catalysis. Self-quenching also poises the system for bimetallic H₂ evolution, which is rarely observed in photochemical or electrochemical catalysis. A catalyst that operates by efficient self-quenching offers an exciting new direction in photochemical H₂ evolution, circumventing the need for separate photosensitizers and redox mediators and enabling highly efficient photo(electro)catalysis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b08701.

Experimental details (PDF)

AUTHOR INFORMATION

Corresponding Author

*ajmm@email.unc.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-SC0014255. A fellowship to C.L.P. was supported by the Royster Society of Fellows. This work made use of the Photon Technology, Inc. Quantamaster 4SE-NIR5 and Edinburgh FLS-920 emission spectrophotometers in the UNC EFRC Instrumentation Facility established by the UNC EFRC: Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011. The authors thank Phil Castellano, Jillian Dempsey, Seth Barrett and Kelsey Brereton for fruitful discussions.

REFERENCES

- (1) Gray, H. B.; Maverick, A. W. Science 1981, 214, 1201.
- (2) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. *Chem. Rev.* **2010**, *110*, 6446.

- (3) Lewis, N. S.; Nocera, D. G. Natl. Acad. Eng. 2015, 2, 43.
- (4) Grimes, C. A.; Varghese, O. K.; Ranjan, S. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Electrolysis; Springer: New York, 2008.
- (5) Eckenhoff, W. T.; Eisenberg, R. Dalton Trans. 2012, 41, 13004.

(6) Fukuzumi, S. Eur. J. Inorg. Chem. 2008, 9, 1351.

(7) Teets, T. S.; Nocera, D. G. Chem. Commun. 2011, 47, 9268.

(8) Elgrishi, N.; Teets, T. S.; Chambers, M. B.; Nocera, D. G. *Chem. Commun.* **2012**, *48*, 9474.

- (9) Perutz, R. N.; Procacci, B. Chem. Rev. 2016, 116, 8506.
- (10) Pitman, C. L.; Miller, A. J. M. ACS Catal. 2014, 4, 2727.

(11) Barrett, S. M.; Pitman, C. L.; Walden, A. G.; Miller, A. J. M. J. Am. Chem. Soc. **2014**, 136, 14718.

(12) Suenobu, T.; Guldi, D. M.; Ogo, S.; Fukuzumi, S. Angew. Chem., Int. Ed. **2003**, 42, 5492.

(13) Ziessel, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 844.

(14) Ziessel, R. J. Am. Chem. Soc. 1993, 115, 118.

(15) Barrett, S. M.; Slattery, S. A.; Miller, A. J. M. ACS Catal. 2015, 5, 6320.

(16) Abura, T.; Ogo, S.; Watanabe, Y.; Fukuzumi, S. J. Am. Chem. Soc. **2003**, *125*, 4149.

(17) Gabrielsson, A.; van Leeuwen, P.; Kaim, W. *Chem. Commun.* **2006**, 47, 4926.

(18) (a) Ogo, S.; Kabe, R.; Hayashi, H.; Harada, R.; Fukuzumi, S. *Dalton Trans.* **2006**, 4657. (b) Himeda, Y.; Miyazawa, S.; Onozawa-Komatsuzaki, N.; Hirose, T.; Kasuga, K. *Dalton Trans.* **2009**, 6286. (c) Miller, A. J. M.; Heinekey, D. M.; Mayer, J. M.; Goldberg, K. I. *Angew. Chem., Int. Ed.* **2013**, *52*, 3981. (d) Brewster, T. P.; Miller, A. J. M.; Heinekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. **2013**, *135*, 16022.

(19) Geoffroy, G. L.; Wrighton, M. S. Organometallic Photochemistry; Academic Press: New York, 1979.

- (20) Wang, W.; Rauchfuss, T. B.; Bertini, L.; Zampella, G. J. Am. Chem. Soc. 2012, 134, 4525.
- (21) Costentin, C.; Dridi, H.; Savéant, J. M. J. Am. Chem. Soc. 2014, 136, 13727.

(22) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Acc. Chem. Res. 2009, 42, 1995.

(23) Collman, J. P.; Wagenknecht, P. S.; Lewis, N. S. J. Am. Chem. Soc. 1992, 114, 5665.

(24) Collman, J. P.; Ha, Y.; Wagenknecht, P. S.; Lopez, M.-A.; Guilard, R. J. Am. Chem. Soc. **1993**, 115, 9080.

(25) Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.

(26) Pitman, C. L.; Brereton, K. R.; Miller, A. J. M. J. Am. Chem. Soc. 2016, 138, 2252.

(27) Ladwig, M.; Kaim, W. J. Organomet. Chem. 1992, 439, 79.

(28) Steckhan, E.; Herrmann, S.; Ruppert, R.; Dietz, E.; Frede, M.; Spika, E. Organometallics **1991**, *10*, 1568.

(29) Caix, C.; Chardon-Noblat, S.; Deronzier, A.; Ziessel, R. J. Electroanal. Chem. **1996**, 403, 189.

(30) McCarthy, B. D.; Martin, D. J.; Rountree, E. S.; Ullman, A. C.; Dempsey, J. L. *Inorg. Chem.* **2014**, *53*, 8350.

(31) Turro, N. J.; Chen, J. Y. C.; Sartori, E.; Ruzzi, M.; Marti, A.; Lawler, R.; Jockusch, S.; López-Gejo, J.; Komatsu, K.; Murata, Y. *Acc. Chem. Res.* **2010**, 43, 335.

(32) Refer to Supporting Information for additional details.

(33) Sandrini, D.; Maestri, M.; Ziessel, R. Inorg. Chim. Acta 1989, 163, 177.

(34) Connick, W. B.; Geiger, D.; Eisenberg, R. Inorg. Chem. 1999, 38, 3264.

(35) Keyes, T. E.; O'Connor, C. M.; O'Dwyer, U.; Coates, C. G.;
Callaghan, P.; McGarvey, J. J.; Vos, J. G. J. Phys. Chem. A 1999, 103, 8915.
(36) Singh-Rachford, T. N.; Castellano, F. N. Coord. Chem. Rev. 2010, 254, 2560.

(37) Vincze, L.; Sandor, F.; Pem, J.; Bosnyak, G. J. Fluoresc. **1999**, 9, 11. (38) Takayasu, S.; Suzuki, T.; Shinozaki, K. J. Phys. Chem. B **2013**, 117,

(39) Bock, C. R.; Connor, J. A.; Gutierrez, A. R.; Meyer, T. J.; Whitten, D. G.; Sullivan, B. P.; Nagle, J. K. *J. Am. Chem. Soc.* **1979**, *101*, 4815.

9449.